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ABSTRACT 

The inverse scattering formalism for reflectionless potentials is 

extended to the reconstruction of central potentials in three space 

dimensions. The interquark potential is derived from the + (3.095) 

and $n(3.684) levels and leptonic decay widths. Remaining ambiguities 

are discussed in detail. Consequences for the T family and prospects 

for refining the interquark potential are explored. 
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I. INT RODUCT ION 

An extensive literature1 now supports the notion2 that mesons 

which are composed of massive quarks may be described in terms of 

the nonrelativistic Schrijdinge r equation. An impressive phenomenology 

of the psion family has been constructed following the analogy between 

+- 
(e e ) positronium and (cc’) charmonium. Several approaches to the 

problem have been fruitful. The most thoroughly explored of these 

has been the explicit-potential technique in which a specific form is 

assumed for the interquark potential. In most applications, this 

potential (which is thought to result from the exchange of massless 

gluons) has been assumed to be a superposition of a Coulomb term and 

a linear confining potential. 3 
However, no compelling derivation of 

this form from the underlying field theory has been given, and alternative 

suggest ions 
4 

have met with some degree of phenomenological success. 

Consequently it has been of interest to obtain general results which 

permit the properties of the potential to be inferred from experiment. 

For example, the scaling of observables with quark mass has been 

investigated by a number of authors, 5 and several important theorems 

on the order of levels and on leptonic widths have been proved. 6 
In 

addition, general results (which do not depend upon details of the 

potential) on the number of levels below new-flavor threshold? and on 

other connections between observables8 have been exhibited. We present 

here the first application of the inverse scattering method to the determination 

of the interquark potential. 
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In the preceding paper9 (hereafter denoted as I) we developed a 

technique for reconstructing a symmetric, confining, one-dimensional 

potential V(x) from the energy spectrum of its bound states. The 

energies E n 
of the N lowest-lying bound states determine an approximate 

potential V,(x) which is a rational function of exponentials. The approxi- 

mation V,(x) is a symmetric%reflectionless potential which supports N 

bound states at the first N bound-state energies of V(x). It is not 

confining, but approximates V(x) over a range which is roughly 

delimited by the classical turning point 1 xN 1 of the highest level 

included, where 

‘(* I”& = EN (1.1) 

(For simplicity we consider a potential which is monotonically increasing 

for x 3 0. ) Beyond the classical turning point, VN(x) approaches a 

value E. which lies between the highest level included in the approximation 

and the lowest level omitted, 

In particular examples it was seen that the choice 

E. = i (EN + EN+l) 

(1.2) 

(1.3) 

resulted in excellent approximations. For values of x within the expected 

range of validity, the sequence of approximations V N (x) was shown to 
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approach rapidly the exact result, yielding faithful representations 

of V(x) for N as small as 3 or 4. We now apply this method to the 

problem for which it was conceived. 

Within the framework of the nonrelativistic Schrgdinger equation 

with a central potential, 

f 
a(g) = E@(z) , ($0 4) 

the procedure we shall describe for calculating V(r) is explicit and 

essentially unambiguous. We restrict our attention to spin-triplet quZlrkonium 

states. The possibility of going beyond (1.4) to incorporate spin-spin, 

spin-orbit, and other relativistic effects will not be discussed. In 

Section II we collect some important formulae derived for the one- 

dimensional problem in I and make the necessary extensions to the 

s-wave radial equation in three dimensions. The approximate potential 

V,(r) deduced from the masses and leptonic decay widths of $J and $1 

is the subject of Section III. Assuming the interquark potential to be 

independent of quark flavor, as it would be in quantum chromodynamics, 

we apply the reconstructed ci5 potential to predict properties of the new 

quarkohium system suggested by the discovery 
10 of the T family. We 

also solve the p-wave Schrgdinger equation in the reconstructed 

potential to determine the positions of 3PJ levels and radiative decay 

rates. The manner in which such derived predictions may be used to 
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resolve ambiguities in the reconstructed potential is explained. Section 

IV contains a summary and conclusions. 

II. INVERSE PROBLEM FOR THE 
RADIAL SCHRGDINGER EQUATION 

We first summarize the procedure derived in I whereby a symmetric, 

confining, one-dimensional potential V(x) is locally reconstructed from 

the energies En of its first N bound states. The reconstructed 

potential is specified by the N bound-state pararneters 

2 
U 

n = W30 - EnI , 

where p is the reduced mass and E. has been chosen according to (1.3). 

We define an N X N matrix A with elements 

h h 
A = hmn+- “+“, mn U 

> 

m n 

whe re 

X,(X) = cnexp (-K~x) , 

and the constants cn are given in terms of the K’S by 

c2 
I-I 

K +K 
n m n -= 

“n 
a 

-U 
mfn Km n 

(2.1) 

(2.2) 

(2.3) 

(2.4) 
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We showed using the Gel’fand-Levitan inverse scattering formalism 

that a symmetric, reflectionless potential which supports bound states 

at El' E2, .*., EN is given by 

V,(x) = E. - 2 
d‘ 

- log (Det A) 
dx2 

0 

The corresponding normalized bound-state wavefunctions, which obey 

the condition 

are obtained from the formula 

l) ,(x) = Y$- Et,,@ e 
n 

The matrix A(n) is simply given by A, with the elements of the n-th 

column replaced by their derivatives with respect to x. .Equations (2. 5) 

and (2.7) provide a sequence of approximations to V(x) and its bound- 

state wavefunctions. 

The reduced radial equation which follows from (1.4) upon 

substitution of 

(2.5) 

(2.6) 

(2.7) 

(2.8) 

and 
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(2.9) 

is 

- 1 u”fr) -I- 
2P 

’ (’ ’ ‘) + V(D), - E u(r) 
2f.z’ 3 

= 0 0 (2.10) 

For s-waves, eq. (2.10) is identical to the one-dimensional Schro”dinger 

equation. As a result, the formulas:(Z. 5) and (2.7) may be applied to 

the study of quarkonium systems. However, because of the boundary 

condition 

u(0) = 0 (2.11) 

imposed by the finiteness of the radial wavefunction at the origin, only 

the even-numbered parameters K~, K~, . D D correspond to energy levels 

of physical states. The remaining parameters K~, ~~~ s ,, o describe 

states of a one-dimensi’onal system which have even parity and hence do 

not satisfy (2.11). Consequently, in order to apply the one-dimensional 

formalism to the s-wave charmonium system, we must regard 4 and 

$1 as the second and fourth levels of a symmetric one-dimensional 

potential V(r) = U( - r) o The even-parity levels which occur in the one- 

dimensional problem are interleaved with the physical psions, one below 

the +; one between + and”.@ “, and so on. 

The values of the parameters K~, K~, *. . that correspond to 

physical states are determined directly from particle masses (with a 
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given choice of E. and charmed quark mass). The others (K 1, K 3, e o D ) 

do not have immediate physical significance. However, the wave functions 

of the physical states depend through (2.7) upon the “unphysical” 

parameters K 1, K~, . . . The square of a 3S1 wave-function at the 

origin is measured by the leptonic deo&$~ate as 4.1 

[ W(O)1 2 = 
1 6rc2e 

2 r( F-+ e+eT , 
Q 

(2.12) 

where M 
IT- 

is the vector meson mass and e 
Q 

is the charge of the 

constituent quark. This piece of information permits the determination 

of the odd-numbered K 1s from experimental data, 

To illustrate these points let us construct the N = 2 approximation 

to the charrnonium potential from the mass and leptonic width of + (3.095). 

We must first choose a charmed quark mass mc and a parameter Eo. 

According to the rule (1 o 3), the latter should lie about halfway between 

E2 = Ml(, and the unphysical level at E3* The parameter K 2 is then 

given by 

3 
A- 

u2 = mctEo-M 1 2 
4J 

* 

To compute K 1 we employ eq. (2.7) to construct the approximate 

wavefunction. Imposing the condition 

(2.13) 

(2.14) 
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which allows the identification 

we obtain 

u,(r) = fi$Jr) 

from which 

2 
? =“2 

2+ww)12 0 
K2 

(2.15) 

(2.16) 

(2.17) 

The formula (2.5) yields a reconstructed potential V,(r) in terms of 

K1 andu 
2’ 

Ln the next Section we shall construct the approximate inte’rquark 

potential V,(r). For N > 2 we have found no simple analog of (2.17) 

for the odd-numbered @se We shall determine them implicitly through 

(Z-3) and (2.12). 
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III. HEAVY QUARK SPECTROSCOPY 

A, Calculation of Central Potentials 

The N = 4 approximation to a central potential is calculated from 

the masses and wavefunctions at the origin of the two lowest-lying s-wave 

bound states. For the states of the charmonium system, the 

parameters ~~ and ~~ are obtained from the +I and ~$1 masses, 

.L 
u2 = 1 2 , 

I 
L 

K4 = v 
) 2 ,* 

The remaining parameters K~ and ~~ are determined implicitly by the 

inverse scattering formulas which express the wavefunctions at r = 0 

in terms of the ufs. Introducing the notation 

(3.1) 

(3.2) 

(3.3) 

we may write the wavefunctions at the origin using (2. 7) as 

1 1 
u2Y12Y23Y24 

2 

WhF { Y13Y14(K1 - Fs3 - q) 

(3.4) 

+Yi3Y34(K1 +K4 - Us) +Y14Y34(Ki *K3 - K41m+ tK1 +K3 +K4) \ 
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TJf(O) = D(O)6 ~y12Y&l - ‘2 - ‘3) 

(3. 5) 

’ Yi2Y23(‘2 - K1 - K3) ‘r Yd3Y23(K3 - K1 - K2) + (Kl $ K2 + K3) t a 

Here wekhave abbreviated 

D(x) =DetA(x) , (3.6) 

where A is defined in (2.2). In particular, we have 

Dto) = ‘(l + Yi2Yi3Yi4 + Yi2Y23Y24 + Yi3Y23Y34 

(3. 7) 

+ ‘14’24’34 + y12y13y24y34 + y$2y23y~4”/34 + y13y23y~4y24) t * 

The prarneters u1 and ~~ are fixed by solving (3.4) and (3.5) numerically 

with, the experimentally-measured wavefunctions;at the, origin. 

Before displaying the N = 4 approximation to the charmonium 

potential, we shall briefly discuss two three-dimensional examples which 

illustrate the technique. They also indicate the response of the inverse 

scattering equations to potentials singular at r = 0, This is an issue of 

some practical importance because general arguments based upon 

quantum chromodynamics suggest that the interquark potential will 

have such a singularity. For these examples we set 2~ = 1. 

We first consider the Coulomb potential 

V(r) = -I/r (3.8) 
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which is neither confining nor reflectionless. Our concern, however, is 

not the convergence of the method to the exact potential, but to learn 

how the singularity is imitated. In this case there is a natural choice 

for the parameter Eo, namely 

E. = 0 

12 
The K’S are determined by the bound-state energies 

El = -1/4 , 

E2 = -l/16 , 

and wavefunctions at the origin 

I I xr$(O) 2 = 1/8n 

The resulting approximation V,(r) is compared with the true potential 

(3,8) in Fig. rtj. The manner in which the pole at the origin is simulated 

is noteworthy. 

As a second example we consider the logarithmic potential 

(3.9) 

(3. IOa) 

(3. IOb) 

(3, lla) 

(3.llb) 

VW = log (r) (3.12) 
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An interquark potential of this form is suggested 
13 

by the equality of 

the $ - $’ and T - Tl level spacings. Numerical evaluation of the energy 

levels and wavefunctions leads to the appropriate parameters 
14 

for the 

inverse scattering equations. The approximation V,(r) is compared with 

the true potential (3.12) in Fig. 2. 

B. The Charmonium System 

The observables from which we shall reconstruct the charmonium 

potential are the masses 

M(+) = 3.095 GeV/c’ (3.13a) 

M(#?) = 3.684 GeV/c2 (3.13b) 

and leptonic decay widths 
15 

+- 
WJ-=- e e 1 = 4.8 f 0.6 keV (3.14a) 

+ - 
l?(t)1 + e e ) = 2.1 f 0.3 keV o 

For a given choice of E. and mcI the parameters K 2 and K4 are given by 

(3.1) and (3.2). The value Bf E. certainly, must lie between M(+t) and 

4.03 GeV/c’, the position of the 33S1 level. In practice we find it 

sufficient to restrict attention to the slightly smalle r range, 

3.75 GeV 5 E 0 r3.9GeV D 

(3,14b) 

(3.15) 

It remains to choose the chartned quark mass. 
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In Fig. 3 we show twenty distinct charmonium potentials corres- 

ponding to the choices E. = 3.75, 3.80, 3.85, 3.90 GeV and mc = 1.1, 

1.2, 1:3, 1.4, 1.5 GeV/c2, All of these reproduce--by construction--the 

observables (3.13) and (3.14). It is striking that smooth potentials 

of such diverse character ranging from Coulombic (mc =‘X. a, !mEo’= 3.;75) 

to linear (mc = 1.5, E. = 3.8) and beyond (mc = 1,4, E. = 3.85), are 

achieved. 

We shall also explore the implications of the reconstructed 

charmonium potentials for the T system. The T(9.4) andTr(lO.O) are 

regarded as the 13SI and Z3S1 levels of a Q?$system. The appropriate 

value of the heavy quark mass m 
Q 

for each of the twenty potentials 

displayed in Fig. 3 is chosen by requiring M(J’) = 9.4 GeV/c’. The 

ordinates for the $ and T systems are then related by 

Eat T) = EON) + 2(m Q - mc) - 

We find mQ/mc essentially independent of Eo(+), and varying between 

4.1 (for mC = 1.1 GeV/c’) and 3.2 (for mc = 1. 5 GeV/c2). 

The presence of four T levels in all the potentials of Fig. 3 is 

a consequence of the choice of Eo, mc, and of the stipulation that 

mt T) 
2 7 

= 9.4 GeV/c o The value of E. is not necessarily correlated with 

flavor threshold. However, it is possible to estimate the number of 

narrow T levels (those below flavor threshold) directly from Fig. 3 if 

the two flavor thresholds differ by 2m - 2m = EO(T) - Eo($). 16 
Q c 

The 

(3.16) 
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flavor threshold for the charmonium system is a line lying 45 MeV above 

the $1 on the left-hand side of each picture in Fig. 3. The corresponding 

flavor threshold for the T family is the ,exten#sion of this line, to the 

right 0 Thus, one would expect four narrow T levels for small mc and 

EoG (l&v&r left-hand corner of Fig. 3), and three for large mc and E. 

(upper right -hand corner of Fig. 3). This is in accord with the expectation 

of three or four narrow T levels obtained in Ref. 7 in a semiclassical-: 

approximation. 

For a given value of Eo, Fig. 3 shows that smaller values of mc 

are correlated with deeper potentials. Since the levels 

En 
= <T-t-V> = ,pdV 

n Z-tgn -I- <v> 
n (3.17) 

are fixed, decreasing mc is correlated here with more negative <V> and 

larger < 
r dV z dr> (steeper potential, greater kinetic energy). The potentials 

also become deeper for fixed m c and decreasing Eo, corresponding to 

a decreasing ratio of K~/K~. 

In order to sharpen the estimates of mc and E. we now focus on 

two spectral quantities which are, to some degree, known from available 

data: the p-wave charmonium levels and the T - T’;i mass difference. 

The predicted mass of the 2P charrnonium state xc is shown as a 

function of mc and E. in Fig. 4. To compare it with experiment, we 

note that spin-orbit and tensor force contributions vanish for the combination 
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<M(Z3P)> E $ [M(3Po) + 3M(3pl) + 5M(3P2)] 

(3.18) 

c: 3.52 GeV/c’ . 

The numerical value in (3.18) comes from masses quoted in Ref. 17. 

Values of mc and E. in the lower right-hand corner of Fig. 4 are 

preferred. Many of the models noted in Ref, 3 predict too low a value 

of M(x,); this may be connected with the higher charmed quark masses 

occurring in such models. 

A contour plot of the predicted T - T y mass difference is shown 

in Fig. 5. The shapes of the contours are similar tothose in Fig. 4. 

The experimental values 
18 

i 0.61 * 0.04 GeV/c’ 

M(Tf’j I (three -peak hypothesis) 
-M(T) = 

0.65 f 0.03 GeV/c’ 
(two-peak hypothesis) 

again favor values of E o and mc in the lower right-hand corner of the 

figure. A specific potential which reproduced the result (3.18) ‘, 

when constructed to give the observed TP - T spacing already has been 

noted in Ref. 13. 

The small values of mc s 1.1 - 1.3 GeV/c’ implied by comparison 

of Figs. 4 and 5 with (3.18) and (3.19) I;te~d~t”~>~weak~a;-s.o~ewhat the 

case for a nonrelativistic approach to charmonium spectroscopy. However, 

(3.19) 
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these small values have been encountered previously: they are obtained 

from sum rules for e+e- annihilation, 
8 

and are required if the specific 
3, :q 

rhodelof :Ref. 13 is constrained to fit l?(+ - e+e-). 19 

The similarity of contours in Figs. 4 and 5 prevents an unambiguous 

choice of E. and m ce A very different dependence is exhibited by the 

leptonic width of T, shown in Fig. 6. This quantity is particularly 

sensitive to short-distance behavior of the potential not probed by 

existing data. A clear correlation may be noted between large values of 

r(T + e+e-) and highly singular potentials. (See the lower left-hand 

corners of Figs. 6 and 3, respectively. ) 
20 

The higher-lying Tg” samples values of the potential that include 

those related to charmonium spectroscopy. Indeed, the predicted 

values of I?( T’ + e+e-), shown in Fig. 7, vary less strikingly than those 

+ -1, 
of F(T + e e )e This relative insensitivity to parameters may be 

useful for a test of the heaivy c@%rki'charge e 21 
-* Q' 

Additional inforrnation on the preferred values of mc and Eo, very 

different from that provided by present data, will come from measurement 

of the ZS-2B splittings in the T system. The predicted values are shown 

in Fig. 8. For singular (Coulomb-like) potentials, such as occur in the 

lower left-hand corner of Fig. 3, the 2s and 2P levels are nearly 

degenerate 0 They move apart as the potentials become shalIower, 

The T” - Tt splitting is displayed in Fig. 9. It is slowly varying 

over the range of interest, a feature compatible with previous expectations 
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based on specific models. 
22 The three-peak hypothesis of Ref. 18 

gives 

M( T”) - M(T I) % 0.39 f 0.13 GeV/c’ (3.20) 

For the purpose of further discussion we have chosen two specific 

values of mc and E o, lying along approximate contours of Figs.44and 5: 

(MC, Eo) = (1. I GeV/c’, 3.8 GeV) and (1.2 GeV/c2, 3.85 GeV). These 

choices ensure (i$ approximate agreement with the constraints (3. i8), 

(3.19); (ii) reasonably smooth behavior with r, and (ii!i)~ a pair of potent-ials 

between which new experimental data can provide a reasonable distinction. 

Some properties of levels in these two potentials are shown in Table I. 

The uncertainty in the value of I’( T + e+e-) apparent from Table I 

already has been noted in connection with Fig. 6. The other leptonic 

widths are more stable. They fail to decrease monotonically: compare 

T’ and T “p This effect is an artifact of the oscillating convexity of 

the reconstructed potential. 
23 

The predicted radiative decay widths of the + 1 states into x,y 

are considerably too large. A similar discrepancy arises in specific 

3,13 
potential models s and may indicate a general shortcoming in the 

non-relativistic Schrzdinger bound-state picture of charrnonium. 
24 

However, radiative decays are particularly demanding tests of structure, 
25 

probably requiring more pieces of information th&:.the four (less two 

free parameters)> at our disposal. 
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IV. SUMMARY AND CONCLUSIONS 

With the wealth of charmonium data now available,and:th-e : 

prospects for measurement of a still richer T spectrum, it seems 

likely that future efforts toward a theory of heavy quark bound states 

will fall along two main lines of investigation, one theoretical, the 

other phenomenological. Attempts to relate the interquark potential 

26 function V(r) to fundamental theory ;w.ilk:$e-l~~~~~~~~~~~d,~y 

phenomenological determination of this function from the measured 

bound-state parameters. The work described here and in I is directed 

toward the phenomenological investigation. Within the r;framework of 

the nonrelativistic Schrgdinger equation with a central interquark 

potential V(r), we have developed a systematic method for reconstructing 

V(r) from the masses and leptonic decay widths of s-wave bound states. 

With information about N bound state levels, the method provides an 

explicit formula for a reconstructed potential VZN(r)* A mathematical 

proof that VZN (r) converges to the exact potential V(r) is still lacking. 

However, the examples studied in Sec. IV of I leave little doubt that this 

is the case for any reasonably smooth function V(r). More importantly, 

these examples clearly show that the number of bound states needed 

for the practical application of this method is very small, with V4(r) 

(two bound states) already providing a rather accurate approximation to 

V(r) over some range of r. 
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The charmonium potential V,(r) constructed from L/J and 4’ data 

was discussed extensively in Sec. III. The ambiguities in V,(r) associated 

with the choice of charmed quark mass and E. parameter may be viewed 

as a commentary on the limits of our present knowledge of V(r) and the 

manner in which this knowledge will be refined and extended by future 

measurements of the T system. Already the combined evidence of the 

T - T ’ splitting and the p-wave charmonium levels suggests a rather 

small value for the charmed quark mass, m The 
C 

s 1,i - 1.2 GeV/c2. 

sensitivity of quantities such as I’( T + e+e-) and the TL’ - xb (2s - 2P) 

splitting to the remaining ambiguities in V,(r) serves to emphasize that 

these quantities probe values of r which are not explored in the charmonium 

system. 

We conclude that inverse scattering techniques provide a valuable 

tool for analyzing and correlating presently available quarkonium data 

and for using these data to estimate the spectral parameters of the T 

system. This approach can complement the more familiar explicit 

potential techniques that allow the incorporation of theoretical ,prejudices 

regardi.ng the form of the potential at short and long distances. 

But in our view, the most encouraging aspect of the present work 

is the prospe.ct of reconstructing the quark potential from forthcoming 

data on the T system. According to general arguments, 
7 

which are borne 

out by the specific potentials studied in Sec. III, this system is expected 

to have at least three and possibly four narrow 
3 

S1 bound-state levels. 

From the examples described in Sec. IV of I, we expect V6(r) or V,(r) 

to provide a very accurate representation of the true potential. Moreover, 

the assumptions and approximations which go into a nonrelativistic 
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potential model should be much more reliable for the heavier quarks 

which form the T states. Thus, when the T levels are accessible to 

e+e- machines, they will provide an extremely detailed and accurate 

measurement of the potential which binds quarkonium. 
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Table I. Predicted properties of levels 
in two quarkonium potentials 

m 
C 

= 1.1 GeV/c’ m 
C 

= 1.2 GeV/c’ 

EO 
= 3.8 GeV 

EO = 3.85GeV 

I M, GeV/c’ 
T 

r ee, .keVa) 

T' 
1 

M, GeV/c2 

r ee, kev a) 

I 

M, GeV/c2 
T !’ 

r ee, keVa) 

M, GeV/c’ 
T “t 

I? ee, keVa) 

xb(2P) <AQGeV/c2 

rw-+ x,Y), 

keV Cl 

4 e Q 
= -1/3 is assumed. 

b) Ref. 17 

9.40 (input) 

1.19 

9.40 (input) 

0.69 

9.98 

0. 32 

9.96 

0.27 

10.32 10.27 

0.33 0.30 

10.58 

0.18 

10.54 

0.18 

9.89 9. 81 

76 

64 

50 

71 

60 

47 

Experiment b) 
., . 

15 f 5 
T 

15 f 5 

15*4 

C) IIn the expression I?(+ I+ x c 3 [ I PJ y) = 4aeQ2(2J+l)k y31<+!\rlX>(2/27, 

the experimental values of the photon energy, k 
Y8 

derived from the 

particle masses of Ref. 17, are used. 
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Fig. 1: 

Fig. 2: 

Fig. 3: 

Fig. 4: 

Fig. 5: 

FIGURE CAPTIONS 

Two-bound-state approximate reconstruction V,(r) 

of the Coulomb potential compared with the exact 

potential (3.8). The physical and unphysical levels 

are indicated by solid and dashed lines, respectively. 

Two-bound-state approximate reconstruction V4(r) 

of the logarithmic potential compared with the 

exact potential (3.12). The physical and unphysical 

levels are indicated by solid and dashed lines, 

respectively. 

Interqmrk potentials reconstructed from the masses 

and leptonic widths of +(3.095) and +‘(3.684). The 

levels of charmonium are indicated on the left-hand 

side of each graph. Those of the upsilon family 

are shown on the right-hand side of each graph. 

The solid lines denote 3Si levels: dashed lines 

indicate the 23PJ levels. The twenty .potentials 

depicted correspond to the choices E. = 3.75, 

3.8, 3.85, 3.9GeVandm =1.1, 1.2, 1.3, 

i. 4, 1.5 GeV/c2. 

C 

Contours of the predicted mass of the 23PJ (xc) 

level of the charmonium system as functions of 

the parameters E. and mc. 

Contours of the predicted T - T' level Splitting 

as functions of the parameters E. and mC. 



Fig. 6: Contours of the predicted leptonic width of T as 

functions of the parameters E. and mc. 

Fig. 7: Contours of the predicted leptonic width of T I 

as functions of the parameters E 0 and m . 
C 

Fig. 8: Contours of the predicted 2S-2P splittings of the T 

family as functions of the parameters E. and m . 
C 

Contours of the predicted T* - T” level splitting 

as functions of the parameters E. and m . 
C 

Fig. 9: 
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